Next Gen 10 Scalable Scientific Data Management

Carlos Maltzahn,
Systems Research Lab, UC Santa Cruz,
Institute for Scalable Scientific Data Management, LANL/UCSC
Ultrascale Systems Reserch Center, NM Consortium

Next Gen: what is not going to change

- Digital Data will continue to
 - grow exponentially
 - require active protection
 - outgrow read speed of archival storage media
 - consume a lot of power
 - be stored in byte streams
 - be hard to move or convert

Next Gen: what is going to change

- Data access will rely on
 - data **structure**
 - Parsing overhead of unstructured data unaffordable
 - Examples: Apache Avro, Binary XML, ProtocolBuffers, Multimedia, ...
 - temporal structure
 - Applications do have utilization needs and deadlines: specify them!
 - well-known data models
 - Allows automatic access optimization
 - Minimizes data movement (due to shared model)
 - automatic access optimization
 - Allows declarative querying, updates
 - User won't want to re-invent optimization for each application

The POSIX I/O Bottleneck

- POSIX IO dominates
 File system interface
- POSIX IO does not scale
 - **50** years ago: 100MB
 - Now: I00PB (x I billion)
- Performance price of POSIX IO is high
 - Workload- & systemspecific interposition layers (e.g. PLFS): almost 1,000 x speed-up
- Common Workaround
 - Middleware tries to make up for limitations
 - Still uses POSIX!

DAMASC: DAta MAnagement in Scientific Computing

- Enhance parallel file system with data services
 - Declarative querying
 - Views
 - Automatic content indexing
 - Provenance tracking
- Index, not ingest!
- In situ processing on storage nodes

DAMASC: SciHadoop [SCII]

- All access via scientific access library (e.g. NetCDF)
- Task manager partitions logical space
 - instantiates mappers and reducers for logical partition
 - places mappers and reducers based on logical relationships
- Benefits of structure-awareness
 - reduces data transfers
 - reduces remote reads
 - reduces unnecessary reads

Scientific File Formats

Logical Data Model

- High-level logical data model (e.g. arrays)
- Translates logical view to physical locations
- All data access must pass through the access library
- Array-based Data Access Library

 Byte Stream

 Distributed File System

Library hides data location

Query Language

- Details in SCII paper
- Functions applied to arrays
 - What is the maximum value in some array?
- Simple language exposes data requirements

SciHadoop Partitioning and Placement

Naïve Partitioning

Logical Execution

Partitioning 2 3 5 6 9 8 0 partition-1 partition-2 Filter / Map / Combine Filter / Map / Combine **Reduce**

Physical Accesses

SciHadoop reduces data transfers

• Example: holistic functions (e.g. median)

SciHadoop reduces remote reads

• Physical-to-logical translation (modified library)

SciHadoop reduces remote reads

• Grouping chunks by sampling (unmodified lib)

SciHadoop reduces unnecessary reads

• Example: only access query's data requirements

SciHadoop: Performance results

Local	Temp	CPU	Run	Time
Read	Data	Util	Time	σ
(%)	(GB)	(%)	(Min)	(%)
First 4 use no Holistic Combiner				
9.3	2,586	34.7	159	14
9.2	2,588	34.3	132	3
80	2,608	24.3	188	10
88	2,588	29.9	201	3
Next 4 use Holistic Combiner with baseline				
9.5	107	79.1	28	2
9.5	107	80.7	27	3
8.8	107	81.3	26	1
8.6	107	79.3	26	0.7
Next 3 use Holistic Combiner with Local-Read Optimizations				
70.7	116	84.7	25	0.4
79.3	188	83.1	26	1
88.1	196	82.8	27	2
	Read (%) use no H 9.3 9.2 80 88 colistic C 9.5 9.5 8.8 8.6 combiner 70.7	Read (%) Data (GB) use no Holistic C 9.3 2,586 9.2 2,588 80 2,608 88 2,588 colistic Combiner 9.5 107 9.5 107 8.8 107 8.6 107 ombiner with Loc 70.7 79.3 188	Read (%) Data (%) use no Holistic Combiner 9.3 2,586 34.7 9.2 2,588 34.3 80 2,608 24.3 88 2,588 29.9 Iolistic Combiner with base of the part	Read (%) Data (%) Util (Min) use no Holistic Combiner 9.3 2,586 34.7 159 9.2 2,588 34.3 132 80 2,608 24.3 188 88 2,588 29.9 201 colistic Combiner with baseline 9.5 107 79.1 28 9.5 107 80.7 27 8.8 107 81.3 26 8.6 107 79.3 26 ombiner with Local-Read Optimize 70.7 116 84.7 25 79.3 188 83.1 26

SciHadoop: Summary

- Map/Reduce data processing on scientific data using standard access libraries (here NetCDF3) and Hadoop
- Declarative query interface for Map/Reduce programs
- Powerful optimizations enabled by access to both logical and physical structure of data

More hierarchical? Presentation to user?

- Hierarchies and files are here to stay
 - Required for grouping data
 - Enhanced by search on attributes & relations
- Multiple views, multiple data models:
 - Hierarchical view for data groups and files
 - Relational view for catalog data
 - Array-based view for scientific data
 - **Graph**-based view for networking data
 - Full integration of all views and data models
 - Declarative access languages

Lessons from cloud storage?

- Services sell, capacity alone does not
 - E.g. safety, security, transcoding, archiving, compliance, elasticity, ...
- Availability and speed sell
 - Design around CAP Theorem
 - Understand consistency requirements
- What you can't meter, you can't sell
 - Price by SLOs, sell predictability
- Failures correlated (bursty) along failure domains
- Key/value stores: memcached, Cassandra, S3

Record-based IO?

- Now: Record-based IO above middleware
- Future: Record-based IO at OSD interfaces
 - Minimizes data movement
 - Supports also page-based interface for bulk IO

Crazy ideas

- Storage API: data objects in VTK Pipeline
- Scientific data curation as a game: why is Solitaire, essentially a sorting & assignment activity, so addictive?
- Jitter elimination by performance management. Then we can run everything everywhere.

Acknowledgements

UCSC: Joe Buck, Noah Watkins, Jeff LeFevre, Kleoni Ioannidou, Alkis Polyzotis, Sott Brandt, Wang-Chiew Tan

LANL: John Bent, Gary Grider, Meghan Wingate, James Nunez, Carolyn Connor, Lucho Ionkov, Mike Lang, Jim Ahrens

LLNL: Maya Gokhale, Celeste Matarazzo, Sasha Ames

UCAR/Unidata: Russ Rew

Thank you! systems.soe.ucsc.edu